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We introduce a complex generalization of the Wigner time delay τ for subunitary scattering systems.
Theoretical expressions for complex time delays as a function of excitation energy, uniform and nonuniform
loss, and coupling are given. We find very good agreement between theory and experimental data taken on
microwave graphs containing an electronically variable lumped-loss element. We find that the time delay and the
determinant of the scattering matrix share a common feature in that the resonant behavior in Re[τ ] and Im[τ ]
serves as a reliable indicator of the condition for coherent perfect absorption (CPA). By reinforcing the concept
of time delays in lossy systems this work provides a means to identify the poles and zeros of the scattering
matrix from experimental data. The results also enable an approach to achieving CPA at an arbitrary frequency
in complex scattering systems.
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Introduction. In this Letter we consider the general prob-
lem of scattering from a complex system by means of
excitations coupled through one or more scattering channels.
The scattering matrix S describes the transformation of a set
of input excitations |ψin〉 on M channels into the set of outputs
|ψout〉 as |ψout〉 = S|ψin〉.

A measure of how long the excitation resides in the in-
teraction region is provided by the time delay, related to the
energy derivative of the scattering phase(s) of the system. This
quantity and its variation with energy and other parameters
can provide useful insights into the properties of the scattering
region and has attracted research attention since the seminal
works by Wigner [1] and Smith [2]. A review of the theoretical
aspects of time delays with an emphasis on solid state applica-
tions can be found in Ref. [3]. Various aspects of time delays
have recently been shown to be of direct experimental rele-
vance for manipulating wave fronts in complex media [4–6].
Time delays are also long known to be directly related to the
density of states of open scattering systems (see discussions
in Ref. [3] and more recently in Refs. [7,8]).

For the case of flux-conserving scattering in systems with
no losses, the S matrix is unitary and its eigenvalues are phases
eiθa , a = 1, 2, . . . , M. These phases are functions of the ex-
citation energy E and one can then define several different
measures of time delay (see, e.g., Refs. [3,9]), such as partial
time delays associated with each channel τa = dθa/dE , the
proper time delays which are the eigenvalues of the Wigner-
Smith matrix Q̂ = ih̄ dS†

dE S, and the Wigner delay time which is
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the average of all the partial time delays (τW = 1
M

∑M
a=1 τa =

1
M Tr[Q̂]).

A rich class of systems in which the properties of var-
ious time delays enjoyed thorough theoretical attention is
scattering of short-wavelength waves from classically chaotic
systems, e.g., billiards with ray-chaotic dynamics or particles
on graphs, e.g., such as considered in Ref. [10]. Various
examples of chaotic wave scattering (quantum or classical)
have been observed in nuclei, atoms, molecules, ballistic two-
dimensional electron gas billiards, and most extensively in
microwave experiments [11–16]. In such systems time delays
have been measured starting from the pioneering work [17],
followed over the last three decades by measurement of the
statistical properties of time delays through random media
[18,19] and microwave billiards [20]. A Wigner time delay for
an isolated resonance described by an S-matrix pole at a com-
plex energy E0 − i� has a value of Q = 2h̄/� on resonance,
hence studies of the imaginary part of the S-matrix poles
probe one aspect of time delays [21–26]. In the meantime,
the Wigner-Smith operator (WSO) was utilized to identify
minimally dispersive principal modes in coupled multimode
systems [27,28]. A similar idea was used to create particlelike
scattering states as eigenstates of the WSO [4,29,30]. A gener-
alization of the WSO allowed maximal focus on, or maximal
avoidance of, a specific target inside a multiple scattering
medium [6,31].

Time delays in wave-chaotic scattering are expected to
be extremely sensitive to variations of the excitation energy
and scattering system parameters, and will display universal
fluctuations when considering an ensemble of scattering sys-
tems with the same general symmetry. The universality of
fluctuations allows them to be efficiently described using the
theory of random matrices [9,32–40]. Alternative theoretical
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treatments of time delays in chaotic scattering systems suc-
cessfully adopted a semiclassical approach (see Ref. [7] and
references therein).

Despite the fact that the standard theory of wave-chaotic
scattering deals with perfectly flux-preserving systems, in
any actual realization such systems are inevitably imperfect,
hence absorbing, and theory needs to take this aspect into
account [41]. Interestingly, studying scattering characteristics
in a system with weak uniform (i.e., spatially homogeneous)
losses may even provide a possibility to extract time delays
characterizing an idealized system without losses. This idea
has been experimentally realized already in Ref. [17] which
treated the effect of subunitary scattering by means of the
unitary deficit of the S matrix. In this case consider the Q
matrix defined through the relation S†S = 1 − (γ�/2π )QUD,
where γ is the dimensionless “absorption rate” and � is the
mean spacing between modes of the closed system. In the
limit of vanishing absorption rate γ → 0 such QUD can be
shown to coincide with the Wigner-Smith time-delay matrix
for a lossless system, but formally one can extend this as a
definition of Q for any γ > 0. Note that this version of a time
delay is always real and positive. Various statistical aspects
of time delays in such and related settings were addressed
theoretically in Refs. [42–45].

Experimental data are often taken on subunitary scattering
systems and a straightforward use of the Wigner time-delay
definition yields a complex quantity. In addition, both the
real and imaginary parts acquire both negative and positive
values, and they show a systematic evolution with energy or
frequency and other parameters of the scattering system. This
clearly calls for a detailed theoretical understanding of this
complex generalization of the Wigner time delay. It is nec-
essary to stress that many possible definitions of time delays
which are equivalent or directly related to each other in the
case of a lossless flux-conserving systems can significantly
differ in the presence of flux losses, either uniform or spatially
localized. In the present Letter we focus on a definition that
can be directly linked to the fundamental characteristics of the
scattering matrix—its poles and zeros in the complex energy
plane—making it useful for fully characterizing an arbitrary
scattering system. Note that S-matrix poles have been ob-
jects of long-standing theoretical [46–54] and experimental
[21–23,25] interest in chaotic wave scattering, whereas S-
matrix zeros started to attract research attention only recently
[26,55–63].

Complex Wigner time delay. In our exposition we use the
framework of the so-called “Heidelberg approach” to wave-

chaotic scattering reviewed from different perspectives in
Refs. [64–66]. Let H be the N × N Hamiltonian which is used
to model the closed system with ray-chaotic dynamics, W de-
noting the N × M matrix of coupling elements between the N
modes of H and the M scattering channels, and by A the N ×
L matrix of coupling elements between the modes of H and
the L localized absorbers, modeled as L absorbing channels
[67]. The total unitary S matrix, of size (M + L) × (M + L)
describing both the scattering and absorption on equal footing,
has the following block form (see, e.g., Refs. [56]),

S (E ) =
(

1M − 2π iW †D−1(E )W −2π iW †D−1(E )A
−2π iA†D−1(E )W 1L − 2π iA†D−1(E )A

)
,

(1)

where we defined D(E ) = E − H + i(�W + �A) with �W =
πWW † and �A = πAA†.

The upper left diagonal M × M block of S (E ) is the ex-
perimentally accessible subunitary scattering matrix and is
denoted as S(E ). The presence of uniform-in-space absorption
with strength γ can be taken into account by evaluating the
S-matrix entries at a complex energy: S(E + iγ ) := Sγ (E ).
The determinant of such a subunitary scattering matrix Sγ (E )
is then given by

det Sγ (E ) := det S(E + iγ ) (2)

= det[E − H + i(γ + �A − �W )]

det[E − H + i(γ + �A + �W )]
(3)

=
N∏

n=1

E + iγ − zn

E + iγ − En
, (4)

In the above expression we have used that the S-matrix
zeros zn are complex eigenvalues of the non-self-adjoint
(non-Hermitian) matrix H + i(�W − �A), whereas the poles
En = En − i�n with �n > 0 are complex eigenvalues of yet
another non-Hermitian matrix H − i(�W + �A), frequently
called in the literature “the effective non-Hermitian Hamilto-
nian” [9,46,54,65,66,68]. Note that when localized absorption
is absent, i.e., �A = 0, the zeros zn and poles En are complex
conjugates of each other, as a consequence of S-matrix unitar-
ity for real E and no uniform absorption γ = 0. Extending
to locally absorbing systems the standard definition of the
Wigner delay time as the energy derivative of the total phase
shift we now deal with a complex quantity:

τ (E ; A, γ ) := −i

M

∂

∂E
log det Sγ (E ) (5)

= Re τ (E ; A, γ ) + i Im τ (E ; A, γ ), (6)

Re τ (E ; A, γ ) = 1

M

N∑
n=1

[
Im zn − γ

(E − Re zn)2 + (Im zn − γ )2
+ �n + γ

(E − En)2 + (�n + γ )2

]
, (7)

Im τ (E ; A, γ ) = − 1

M

N∑
n=1

[
E − Re zn

(E − Re zn)2 + (Im zn − γ )2
− E − En

(E − En)2 + (�n + γ )2

]
. (8)
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Equation (7) for the real part is formed by two Lorentzians
for each mode of the closed system, potentially with differ-
ent signs. This is a striking difference from the case of the
flux-preserving system in which the conventional Wigner time
delay is expressed as a single Lorentzian for each resonance
mode [69]. Namely, the first Lorentzian is associated with
the nth zero while the second is associated with the corre-
sponding pole of the scattering matrix. The widths of the
two Lorentzians are controlled by system scattering proper-
ties, and when Im zn → γ ± 0 the first Lorentzian in Eq. (7)
acquires the divergent, delta-functional peak shape, of either
positive or negative sign, centered at E = Re zn. Note that the
first term in Eq. (8) changes its sign at the same energy value.
These properties are indicative of the “perfect resonance”
condition, with divergence in the real part of the Wigner
time delay signaling the wave or (quantum) particle being
perpetually trapped in the scattering environment. In different
words, the energy of the incident wave or particle is perfectly
absorbed by the system due to the finite losses.

The pair of equations (7) and (8) forms the main basis for
our consideration. In particular, we demonstrate in Supple-
mental Material Sec. I [70] that in the regime of well-resolved

resonances Eqs. (7) and (8) can be used for extracting the
positions of both poles and zeros in the complex plane from
experimental measurements, provided the rate of uniform ab-
sorption γ is independently known. We would like to stress
that in general the two Lorentzians in (7) are centered at
different energies because generically the pole position En

does not coincide with the real part of the complex zero Re zn.
From a different angle it is worth noting that there is

a close relation between the objects of our study and the
phenomenon of the so-called coherent perfect absorption
(CPA) which attracted considerable attention in recent years,
both theoretically and experimentally [60,62,71–73]. Namely,
the above-discussed match between the uniform absorption
strength and the imaginary part of scattering matrix zero γ =
Im zn simultaneously ensures the determinant of the scattering
matrix to vanish [see Eq. (4)]. This is only possible when
|ψout〉 = 0 despite the fact that |ψin〉 �= 0, which is a mani-
festation of CPA (see, e.g., Refs. [55,56]).

Experiment. We focus on experiments involving mi-
crowave graphs [13,62,74,75] for a number of reasons. First,
they provide for complex scattering scenarios with well-
isolated modes amenable to a detailed analysis. We thus avoid

FIG. 1. (a) shows a schematic of the graph experimental setup. The lumped loss �A is varied by changing the applied voltage to the
variable attenuator. (b) and (c) show experimental data of both real and imaginary parts of Wigner time delay Re[τ ] and Im[τ ] (normalized by
the Heisenberg time τH) as a function of frequency under different attenuation settings for a single isolated mode. For each attenuation setting,
the data are plotted from 2.645 to 2.665 GHz. For clarity, plots with a higher attenuation setting are shifted 0.01 GHz from the previous one.
The inset shows the entire range of Re[τ ] for an attenuation setting of 2.35 dB. (d) and (e) demonstrate the two-Lorentzian nature of the real
and imaginary parts of the Wigner time delay as a function of frequency. The fitting parameters in these two plots are Re zn = 2.6556 GHz,
En = 2.6544 GHz, Im zn − γ = −7.1065 × 10−4 GHz, and �n + γ = 0.0110 GHz. The constants used in the Re[τ ] and Im[τ ] fits are CR =
0.26 and CI = −0.0018 in units of τH. A detailed discussion about the fitting constants and degree of isolation of the modes can be found in
Supplemental Material Sec. IV [70].
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the complications of interacting poles and related interfer-
ence effects [76]. Graphs also allow for convenient parametric
control such as variable lumped lossy elements, variable
global loss, and breaking of time-reversal invariance. We uti-
lize an irregular tetrahedral microwave graph formed by coax-
ial cables and T-junctions, having M = 2 single-mode ports,
and broken time-reversal invariance. A voltage-controlled
variable attenuator is attached to one internal node of the
graph [see Fig. 1(a)], providing for a variable lumped loss
(L = 1, the control variable �A). The nodes involving con-
nections of the graph to the network analyzer, and the graph
to the lumped loss, are made up of a pair of T-junctions. The
coaxial cables and T-junctions have a roughly uniform and
constant attenuation produced by dielectric loss and conductor
loss, which is parametrized by the uniform loss parameter γ .
The two-port graph has a total electrical length of Le = 3.89
m, a mean mode spacing of � = c/2Le = 38.5 MHz, and a
Heisenberg time τH = 2π/� = 163 ns. The graph has equal
coupling on both ports, characterized by a nominal value of
Ta = 0.9450 at a frequency of 2.6556 GHz [77].

Comparison of theory and experiments. Figure 1 shows the
evolution of a complex time delay for a single isolated mode
of the M = 2 port tetrahedral microwave graph as �A is varied.
The complex time delay is evaluated as in Eq. (5) based on the
experimental S( f ) data, where f is the microwave frequency,
a surrogate for energy E . Note that the (calibrated) measured
S-parameter data are directly used for calculation of the com-
plex time delay without any data preprocessing. The resulting
real and imaginary parts of the time delay vary systematically
with frequency, adopting both positive and negative values,
depending on frequency and lumped loss in the graph. The
full evolution animated over varying lumped loss is available
in the Supplemental Material [70]. These variations are well
described by the theory given above.

Figures 1(d) and 1(e) clearly demonstrate that two
Lorentzians are required to correctly describe the frequency
dependence of the real part of the time delay. The two
Lorentzians have different widths in general, given by the val-
ues of Im zn − γ and �n + γ , and in this case the Lorentzians
also have opposite signs. The frequency dependence of the
imaginary part of the time delay also requires two terms,
with the same parameters as for the real part, to be correctly
described. The data in Fig. 1(b) also reveal that Re[τ ] goes
to very large positive values and suddenly changes sign to
large negative values at a critical amount of local loss. For
another attenuation setting of the same mode it was found that
the maximum delay time was 337 times the Heisenberg time,
showing that the signal resides in the scattering system for a
substantial time.

The measured complex time delay as a function of
frequency can be fit to Eqs. (7) and (8) to extract the corre-
sponding pole and zero location for the S matrix. The method
to perform this fit is described in Supplemental Material
Sec. I [70]. The fitting parameters are Re zn and Im zn − γ

for the zero, and En and �n + γ for the pole. Note that the
Re[τ ( f )] and Im[τ ( f )] data are fit simultaneously, and con-
stant offsets CR and CI are added to each fit.

Figure 2 summarizes the parameters required to fit the
experimental complex time delay versus frequency (shown
in Fig. 1) as the localized loss due to the variable attenua-

FIG. 2. (a) Fitted parameters Im zn − γ and �n + γ for the com-
plex Wigner time delay from graph experimental data. Also shown
is the evolution of | det(S)| at the specific frequency of interest,
fCPA, which reaches its minimum at the zero-crossing point. The
inset shows the evolution of Re zn and En = Re En with attenuation.
(b) Evolution of complex zero and pole of a single mode of the graph
in the complex frequency plane as a function of �A. The black crosses
are the initial state of the zero and pole at the minimum attenuation
setting. The insets show the details of the complex zero and pole
migrations.

tor in the graph is increased. The significant feature here is
the zero crossing of Im zn − γ at frequency f = fCPA, which
corresponds to the point at which Re[τ ( f )] changes sign. As
shown in Fig. 2(a) this coincides with the point at which
| det[S( f )]| achieves its minimum value at the CPA frequency
fCPA. This demonstrates that one or more eigenvalues of
the S matrix go through a complex zero value precisely as
the condition Im zn − γ = 0 and f − Re zn = 0 is satisfied.
Associated with this condition |Re[τ ( fCPA)]| diverges, with
corresponding large positive and negative values of Im[τ ( f )]
occurring just below and just above f = fCPA. Similar behav-
ior of Re[τ ( f )] was recently observed in a complex scattering
system containing reconfigurable metasurfaces, as the pixels
were toggled [73].

Next, we wish to estimate the value of uniform attenuation
γ for the microwave graph. Using the unitary deficit of the S
matrix in a setup in which the attenuator is removed [17], we
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evaluate the uniform loss strength γ to be 3.73 × 10−3 GHz
(see Supplemental Material Sec. III [70]).

Figure 2(b) summarizes the locations of the S-matrix pole
En and zero zn of the single isolated mode of the microwave
graph in the complex frequency plane as the localized loss is
varied. When the S matrix zero crosses the Im zn = γ value,
one has the traditional signature of CPA. Note from Fig. 2 that
the real parts of the zero and pole do not coincide and in fact
move away from each other as localized loss is increased.

Discussion. It should be noted that the occurrence of a neg-
ative real part of the time delay is an inevitable consequence
of subunitary scattering, and is also expected for particles
interacting with attractive potentials [78].

The imaginary part of the time delay was in the past dis-
cussed in relation to changes in the scattering unitary deficit
with frequency [30]. Another approach to defining a complex
time delay has been recently suggested to be based on essen-
tially calculating the time delay of the signal which comes
out of the system without being absorbed [73]. It should be
noted that this ad hoc definition of time delay is not simply
related to the poles and zeros of the S matrix. Moreover, a
closer inspection shows that such a definition of a complex
time delay tacitly assumes that the real parts of the pole
and zero are identical. According to our theory such an as-
sumption is incompatible with a proper treatment of localized
loss.

We emphasize that the correct knowledge of the loca-
tions of the poles and zeros is essential for reconstructing
the scattering matrix over the entire complex energy plane
through Weierstrass factorization [79]. Through graph sim-
ulations presented in Supplemental Material Sec. VII [70]
we demonstrate that the complex time-delay theory presented
here also works for time-reversal invariant systems, and for
systems with variable uniform absorption strength γ . Our
results therefore establish a systematic procedure to find the
S-matrix zeros and poles of isolated modes of a complex
scattering system with an arbitrary number of coupling chan-

nels, symmetry class, and arbitrary degrees of both global and
localized loss.

Recent work has demonstrated CPA in disordered and
complex scattering systems [60,62]. It has been discovered
that one can systematically perturb such systems to induce
CPA at an arbitrary frequency [73,80], and this enables a
remarkably sensitive detector paradigm [73]. These ideas can
also be applied to optical scattering systems where measure-
ments of the transmission matrix are possible [81]. Here, we
have uncovered a general formalism in which to understand
how CPA can be created in an arbitrary scattering system.
In particular, this work shows that both the global loss (γ ),
localized loss centers, or changes to the spectrum can be
independently tuned to achieve the CPA condition.

Future work includes treating the case of overlapping
modes, and the development of theoretical predictions for the
statistical properties of both the real and imaginary parts of
the complex time delay in chaotic and multiple scattering
subunitary systems.

Conclusions. We have introduced a complex generalization
of the Wigner time delay which holds both for arbitrary uni-
form (global) and spatially-localized loss, and directly relates
to poles and zeros of the scattering matrix in the complex
frequency (or energy) plane. Based on that we developed
theoretical expressions for a complex time delay as a function
of frequency (or energy), and found very good agreement with
experimental data on a subunitary complex scattering system.
The time delay and det(S) share a common feature in that CPA
and the divergence of Re[τ ] and Im[τ ] coincide. This work
opens a window on time delays in lossy systems, enabling the
extraction of complex zeros and poles of the S-matrix from
data.
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